
NAVAL POSTGRADUATE SCHOOi
Monterey, California

0 D
q~RjQ

"--

-DTl.

TII SMAR 1 1992

THESIS
VLSI IMPLEMENTATION OF

FUZZY LOGIC
OPERATOR UNIT

by

Ismail bin Dewa

June, 1991

Thesis Advisor: Chyan Yang

Approved for public release; distribution is unlimited

J)92-06182

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION l b RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

33

6c. ADDRESS (City, State, andZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Proramu iement No Project NO I k lNo Wor Unt A Cemoon

11 TITLE (Include Security Classification)

VLSI I MPLEMENTATION OF FUZZY LOGIC OPERATOR UNIT

12 PERSONAL AUTHOR(S) Ismail bin Dewa

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (year, month, day) 15 PAGECOUNT
Master's Thesis From To June 1991 56

16 SUPPLEMENTARY NOTATION
The views expressed in this thesis are those ofthe author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17 COSATI CODES 18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD I GROUP SUBGROUP Fuzzy logic, max, min,inv

19 ABSTRACT (continue on reverse if necessary and identify by block number)

Fuzzy logic is widely used in many applications that deal with uncertainty and approximate reasoning in decision making. Decisions can be
made based on fuzzy inferences. Because of the ease with which Very Large Scale Integration (VLSI) circuits can be made, hardware
implementation of fuzzy logic is thus seen to be an appropriate step to he taken to fully realize its potential. Fuzzy operations are based on
three basic operators, the maximum, minimum and inverse functions. This thesis investigates its implementation in VLSI circuits,
specifically for digital systems. Design structures such as bit-cascade, bit-slice, block-cascade and block-slice were implemented.
Comparisons between these designs are provided.

20 DISTRIBUTIONIAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

1UNCLASSIF tOUNtIMI I i L) 3AMI AS"jIPOKI 13,CTI(SIRS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
Chyan Yang (408) 646-2266 EC/Ya

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

-- oalmao nnm lll lJ IllllIlll / H I iJ

Approved for public release; distribution is unlimited.

VLSI Implementation of

Fuzzy Logic

Operator Unit

by

Ismail bin Dewa

Lieutenant Commander, Royal Malaysian Navy

B.S., Teesside Polytechnic, 1984

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1991

Author: Iwa

Approved by: -- .
Chyan Yang, lesis Advisor

Jon T. Butler, Co-Advisor

Michael A. Morgan, Chairman

Department of
Electrical and Computer Engineering

ii

ABSTRACT

Fuzzy logic is widely used in many applications that deal

with uncertainty and approximate reasoning in decision making.

Decisions can be made based on fuzzy inferences. Because of

the ease with which Very Large Scale Integration (VLSI)

circuits can be made, hardware implementation of fuzzy logic

is thus seen to be an appropriate step to be taken to fully

realize its potential. Fuzzy operations are based on three

basic operators, the maximum, minimum and inverse functions.

This thesis investigates its implementation in VLSI circuits,

specifically for digital systems. Design structures such as

bit-cascade, bit-slice, block-cascade and block-slice were

implemented. Comparisons between these designs are provided.

LAooesson For

NTIS GRA&I R"
DTIC TAB

UnnJu~tFcnr ____ _

Distribut---

A:rAahllity

IAVAS I~

.. I I

/
TABLE OF CONTENTS

I. INTRODUCTION

II. FUZZY LOGIC 3

A. FUZZY SET 4

B. FUZZY SYSTEMS 6

III. FUZZY LOGIC OPERATOR CIRCUIT DESIGN 12

A. NUMBER SYSTEM 12

B. INV CIRCUIT DESIGN 13

C. MAXIMUM AND MINIMUM OPERATOR UNIT DESIGN . . . 14

1. Serial Design 15

2. Parallel Design 17

a. Cascade MIN Design 18

b. Bit-Slice Design 21

c. Block Cascade/Slice Design 23

IV. VLSI IMPLEMENTATION PROCEDURES 26

A. CMOS TRANSISTOR CIRCUIT 27

B. VLSI CAD TOOLS 29

1. Magic 29

2. RNL 30

2. SPICE 30

iv

C. VLSI CIRCUIT LAYOUT OF FUZZY OPERATOR UNIT . 31

D. LAYOUT VERIFICATION................32

E. TIMING ANALYSIS...................33

F. RESULTS.......................34

1. VLSI Estate Area................34

2. Transistor Count................35

3. Timing Analysis................36

V. CONCLUSIONS.......................39

APPENDIX.........................41

LIST OF REFERENCES....................46

INITIAL DISTRIBUTION LIST.................49

V

I. INTRODUCTION

Fuzzy set theory was first introduced by Zadeh (Ref. 1] as

a generalization of ordinary set theory. This generalization

has led to applications such as pattern classification,

information processing, control, artificial intelligence and,

more generally, decision processes involving incomplete and

uncertain data.

Fuzzy logic, which is based on fuzzy set theory, is

sometimes defined as the effective methodology for treating

imprecise human knowledge. It tries to deal with the

uncertainty and imprecision inherent in human decision making

and reasoning processes. At present, especially in Japan, the

most direct and immediate application for fuzzy logic has been

the development of control devices. [Ref. 2,3]

Human decision and reasoning is usually based on fuzzy

inferences that use pdst knowledge. To emulate this

approximate reasoning process, expert systems used past human

knowledge to form its IF-THEN rules. Often LISP and PROLOG are

used to implement these rules. Thus, fuzzy inferences are

implemented through software using existing Boolean logic

hardware. The hardware realization of fuzzy logic can thus be

seen as the appropriate step to fully realize a fuzzy

inference application. This objective was clearly stated by

Han and Singh [Ref. 4]. This thesis is an extension of the

.. -- -- mmn m nu N N~mmn1

paper by Han and Singh and focuses on the VLSI design and

implementation of fast fuzzy logic operators in digital

systems. The basic fuzzy logic operations are the maximum,

minimum and inversion functions. Each of these operations was

implemented and investigated through the use of VLSI CAD tools

available at the US Naval Postgraduate School namely MAGIC,

RNL, PRESIM and SPICE2 [Ref. 5,6,7]. Various circuit designs

of the operators were developed and comparisons were made on

their VLSI estate size, transistor count and speed

performance. Based on these comparisons, the circuit giving

the best performance could be used as building blocks for

constructing real-time fuzzy controllers and inference

engines.

The organization of this thesis is described as follows.

Chapter II gives an overview of fuzzy logic and concepts

pertinent to the thesis. Chapter III discusses the circuit

design of the various Fuzzy Operation Units(FOU) (Ref. 4].

Chapter IV deals with the procedures of implementing these

designs as well as the experimental results. Chapter V

concludes the thesis.

2

II. FUZZY LOGIC

This chapter gives a condensed overview of fuzzy logic

from various references [Ref. 8,9,10,11,12,13,14].

Fuzzy logic may be viewed as an extension of multivalued

logic(MVL) [Ref. 8]. However, its uses and objectives are

quite different from the traditional MVL. Fuzzy logic deals

with approximate rather than precise modes of reasoning. It

treats everything, including truth, as a matter of degree.

Boolean logic comes about partly due to the relative

simplicity of designing binary switching systems and partly

because most of the basic switching modules are two-valued or

bistable. Thus, it is sometimes not adequate for handling real

world problems. In fuzzy logic the truth value of a formula,

instead of assuming one of the two values (0 and 1), can

assume any value in the interval of [0,1] and is used to

indicate the degree of truth represented by the formula. For

example, if the proposition P(x) represent 'x is large

compared with unity' then the truth value of P(10 6) and P(10-6)

are certainly I and 0 respectively. As for P(125), the truth

value of it may be some value between 0 and 1, say 0.25. This

truth value is called the membership grade or membership

function and is denoted as pp(1 25) = 0.25.

3

Some of the main features that differentiate fuzzy logic

from the traditional logical systems are stated by Zadeh (Ref.

6] as follows:

" In two-valued logical systems, a proposition is either
true or false. In multivalued logic, it may be true or
false or have an intermediate truth value. In fuzzy logic,
the truth values are allowed to range over the interval of
0 and 1.

" Two-valued and multivalued logics allow only the
quantifiers "all" and "some". Fuzzy logic allows fuzzy
quantifiers such as "most", "many", "several", "few",
"frequently", "occasionally", "about ten" and so on.

A. FUZZY SET

A fuzzy set is a set and a function (membership function)

f mapping elements of the set into the interval (0,1]. If x is

an element of a fuzzy set, then f(x) is called the grade of x.

Mathematically, if the symbol X denotes a universe of

discourse, which may be an arbitrary collection of subjects or

mathematical constructs, then A, which is defined as a finite

subset of X, can be expressed as

A- {xi fx.2, .. .,xi },

and ij E {1,2 m)

where x,, C {x ,X, ,xn} is an element X and n is the

number of elements in X.

A finite fuzzy subset of A on X is then a set cf ordered

pairs {(xi, PA(Xi)} where PA(Xl) represent grade of membership or

degree of membership. If PA(X0) takes only the value of 0 or

4

1 then pA(xi) is in effect the usual binary Boolean function.

However, PA(x) usually lies in the interval [0,1] with 0 and

1 denoting non-membership and full-membership respectively. It

should also be pointed out that fuzzy subset A can also be

denoted by just its membership function, PA(xl). These two

denotions are used interchangeably in many papers on fuzzy

logic.

An example to illustrate a fuzzy set is as follows.

Referring to Figure 1, let the desirable properties of

selecting a husband by a woman be the universe of discourse

such that

X = { young,handsome,rich }

and let D be the range set the membership function f(x) maps

into. For this example, we have chosen the range of f(x) to be

discretized levels. In reality the range can be continuous.

L

0 \

Figure 1 Fuzzy Set

5

Thus the fuzzy subset A is

A = { (Xi,1A(Xi)) 1A(Xi) E D, x i e X}

where x, can be the element young, rich, handsome

and

PA(Xi) can take any one of 1j, 0.25, 0.5, 0.75, 1}

The subset A can be one of the 125 possible fuzzy subsets,

since each membership function of element X has five

possibilities. The following are examples of subset A,

{(young,0.5)}

or {(rich,0.75)}

or {(young,0.25),(rich,l)} and so on.

Note that sometimes we indicate (young,0.5) as pyoung(X) = 0.5

for an element x in X.

If D has only 0 and 1 as its element then A is the regular

Boolean subset that is for example if

A = {(young,PA(young)}

then if PA(young) = 1 , young is in the set A

= 0 , young is not in the set A

B. FUZZY SYSTEMS

In Boolean logic, the basic logic operations are AND, OR

and NOT. The rest of the logic operations such as NAND, NOR,

EXCLUSIVE OR are derived from these basic operations. The same

can be said about fuzzy logic operations. Their basic

6

operations are the maximum(MAX), minimum(MIN) and

inversion(INV). Rules for fuzzy inference system can usually

be formed from these operations.

As explained previously, a fuzzy subset A of a universe of

discourse X is characterised by a membership function PA(x).

The three basic operators used in a fuzzy set are defined as

follows:

1. The union of the fuzzy subsets A and B of the universe of
discourse X is a fuzzy subset denoted by A u B, with a
membership function defined by

VA(x) = Max[(A (X) ;VB (X)
The union corresponds to the Boolean connective 'OR'.

2. The intersection of the fuzzy subsets A and B is a fuzzy
subset, denoted A n B, with a membership function defined
by

t.L,(x) = min[PA(x) ;IB(X)]

Theintersection corresponds to the connective 'AND'.

3. The inversion(complement) of a fuzzy subset is a fuzzy
subset denoted by -A, with a membership function defined
by

1 A (X) = 1 - IA(x)
Complementation corresponds to the 'NOT' operator.

An example describing these operations are as follows

Using the example from the previous section, let

A = { (young,0.5) }

and

B = { (rich,0.75) }

and

C = { (handsome,0.25)}

then if S is the fuzzy subset such that properties selected

was 'handsome or rich and not young' then S can be stated as

7

S = (C OR B) AND (NOT A).

The numerical truth value of S is

ps(x) = min{max(pc, P),l-PA}

= min{max(0.25,0.75),l-0.5}

= min{0.75,0.5}

0.5.

The definition of a fuzzy set helps us to deal with

information pertaining to human experience. As an example,

consider a mixing process in a chemical plant. A human

operator will use his past knowledge to optimize the flow of

a fluid against the temperature of the process. This operator

knowledge -s easily translated to a set of rules in a fuzzy

system whereas translation in the traditional control system

design might lead to a complex mathematical model which may be

impractical to implement.

A basic concept in fuzzy logic is that of a linguistic

variable or fuzzy variable. A linguistic variable is defined

by Zadeh as a variable whose values is a word or sentence in

a natural or synthetic language. For example, 'flow' is a

linguistic variable since its values is contained in

linguistic expressions such as the flow is 'big', 'medium',

'small', etc. Here, 'big', 'medium' and 'small' are labels to

fuzzy sets. To describe a controlling action, fuzzy variables

are used in fuzzy rules. An example of such a rule is the

statement : if 'input is big' then 'output is medium'.

8

'Input' and 'output' are fuzzy variables describing the fuzzy

rule.

A fuzzy rule is defined as the relation between

observation and action or between two fuzzy variables. A fuzzy

relation R from a set X to a set Y is a fuzzy subset of the

cartesian product X x Y. X x Y is the collection of ordered

pairs (x,y): x e X, y e Y. The membership function of fuzzy

relation, for example the relation R : if A then B; given the

fuzzy subset A of the universe of discourse X and the fuzzy

subset B of Y, is defined as

V.R(XY) = minI PA(X) ; VB (y)] xEX,yEY

A simple example to illustrate this, is suppose that we have

X = { 1,2,3}

and

Y = { ,2,3',4' }.

Then

R = X x Y={ (1, '),(1,2'),(1,3'),(1,4),(2,1'),(2,2'),

(2,3'),(2,4'),(3,1'),(3,2'),(3,3'),(3,4') }.

Let PA(x) and pB(Y) be defined as

X PA(x) y P(Y)

1 0.0 1 0.1

2 0.5 2' 0.9

3 1.0 3' 0.9

4 0.1

9

Therefore PR(XIY) is given as

x y pR(xy)

1 1 0.0

2 2 0.0

3 3 0.0

1 4' 0.0

2 1 0.1

3 2' 0.5

1 3 0.5

2 4' 0.1

3 1 0.1

1 2' 0.9

2 3' 0.9

3 4' 0.1

A linguistic interpretation can be given to this example.

That is, PA(X) can be viewed as "input is big" and pe(y) can

be viewed as "output is medium", where x and y represent input

and output respectively. Then PR(x,y) can be viewed as "if

'input is big' then 'output is medium'". For example PR(x,y)

achieves its maximum value, when x is 3 (input is indeed big)

and y is 2' or 3' (output is indeed medium).

A controller system can be described by a set of such

fuzzy rules for example

if 'input is big' then 'output is medium'

or(else)

if 'input is medium' then 'output is small'

10

This can be translated to an overall fuzzy relation R of two

fuzzy implications through the use of the connective 'OR'.

Thus, R of (if Al then Bi or(else) if A2 then B2) has the

membership function

pR(Y,X) = max[min[4A (x) ;p41(x)] ;min(PA, (x) ;4l,(]X)]

This can be extended to cases of more than two fuzzy

implications.

Suppose we have a fuzzy observation A' and the overall

relation R. For our case A' can be an input between big and

medium, what action should we take? The resultant action is

inferred by the compositional rule of inference [Ref. 9], that

is

B= A'o R

The membership function of B' is defined by

". (Y) = max min(IA'(X) ; R(YX)

Another example of a fuzzy system is an inference engine.

The engine will produce an output based on specific number of

if-then-else rules.

From the above discussion we see the importance of the

basic fuzzy operators (MAX, MIN and INV) in the implementation

of a fuzzy system such as a fuzzy controller and an inference

engine.

11

III. FUZZY LOGIC OPERATOR CIRCUIT DESIGN

From the previous chapter, we know that a fuzzy inference

system can be implemented using the basic building blocks of

MAX, MIN and INV. MAX and MIN are the most significant fuzzy

logic operators since many fuzzy inference processors employ

them in many applications. In this thesis, we will go through

the design process of all the three operator units. These

units basically operate on the numerical values of the

membership function p. Since these values lie in the interval

of 0 and 1 we need to define a number system that we use in

the thesis work.

A. NUMBER SYSTEM

Here, we employ a number system which is similar in

representation to binary fractional numbers. We represent a

fuzzy number as

N = .bbbbbb bn

where n depends on the number of bits used to discretize the

membership function of a fuzzy subset. The binary point here

is implied. Each fuzzy number is 1/(2"-1) less than or greater

than the succeeding or preceding fuzzy number, respectively.

Thus we see that bit weighting is not the same as a binary

fractional number. To convert a fuzzy number to its decimal

12

equivalent, multiply its binary weight by 1/(2'-l). Note that

for n=4 the fuzzy number

0001 = 1 x (1/24-1)

= 0.0667.

Table 1 shows a fuzzy number system with n=4

TABLE 1 FUZZY NUMBER REPRESENTATION

Fuzzy Number Decimal Equivalent

0000 0.0000

0001 0.0667

0010 0.1333

0011 0.2000

0100 0.2667

0101 0.3333

0110 0.4000

0111 0.4667

1000 0.5333

1001 0.6000

1010 0.6667

1011 0.7333

1100 0.8000

1101 0.8667

1110 0.9333

1111 1.0000

B. INV CIRCUIT DESIGN

This is the simplest of the three designs. By definition,

INV(A) = 1 - PA(V).

13

Accordingly, this will requires a substractor circuit. But

by virtue of the fuzzy number system we choose we avoid this;

instead only INVERTERS are required for our IV operator unit.

As an example

INV (0010) = (1101).

A schematic diagram for INV is shown in Figure 2.

Figure 2 Inversion Circuit Diagram

C. MAXIMUM AND MINIMUM OPERATOR UNIT DESIGN

As implied by its meaning, the MIN operator takes two

fuzzy numbers and produces the smaller of them, while the MAX

operator produces the larger. Thus MAX/MIN is basically a

magnitude comparator operating on two binary fuzzy numbers.

Two n-bit numbers can be compared with each other either

serially or in parallel. Accordingly, the design of the

MAX/MIN operator will follow this concept.

14

1. Serial Design

The basic principle in comparing two n-bit numbers is

to compare their most significant bit(MSB) first. A 1 or 0 MSB

will indicate that the number is greater or less than if the

other number MSB is a 0 or 1 respectively. If the MSB is the

same, the next significant bit is compared until an unequal

bit is found. If all bits are the same the two numbers is

equal.

In the serial design, the bits of the two numbers are

compared in a serial fashion with the MSB first into the

MAX/MIN operator unit. A state diagram for a serial MAX unit

is shown in Figure 3.

A=B

A=IB=O A=O.6=1-

10 110

A>8A= A<B
MAX=A / RESET MAX S RESET =BMAX.0

Figure 3 Bit Serial MAX State Diagram

In Figure 3, a reset input places the unit in the A=B

state and as long as A and B bits are equal it remains in this

state and the MAX output takes the value of B. When A nd B

15

bits differ, the MAX unit either goes to the A>B or A<B state

until the next reset input. The MAX output takes the value of

A in the A>B state and the B value in the A<B state. The MAX

operation is expected to be slow using this serial design,

since if there are n-bits per fuzzy number, the unit will

takes at least (n + 1) clock cycles including a reset pulse to

complete an operation. A possible circuit realization of this

design is as shown in Figure 4.

A

COMPARjTOR I

AX A

Figure 4 Bit Serial MAX Circuit Diagram

16

A serial MIN unit can similarly be designed. A MIN

unit only needs the comparator circuit of Figure 4 be replaced

by the circuit shown in Figure 5.

A

B

Figure 5 A<B Comparator Circuit

2. Parallel Design

In the serial design, the two n-bit fuzzy numbers, A

and B, are compared a bit at a time with the MSB first. The

fuzzy numbers are presented serially to the MAX/MIN unit. For

the parallel design, the two numbers are compared n-bits at a

time in parallel. As explained in the previous section, the

same basic principle for magnitude comparison still applies

here. Thus, although the n-bit numbers are compared in

parallel, the comparison is still a bit by bit process in some

sense. The preceding significant bit positions comparison

decision either has to ripple through to the succeeding bit

positions (the longest path is from the MSB to LSB) or be

transmitted simultaneously to the succeeding bit positions

(compare look-ahead). The scheme with the preceding comparison

decision bit propagating to all succeeeding bit positions is

the cascadable design, whereas the scheme using compare look-

17

ahead is defined in the thesis to be a bit-slice design. The

above distinction between cascadable and bit-slice design is

comparable to the well known adder circuit design (ripple-

adder and carry look-ahead adder).

The cascadable design can be expected to be slower

compared to the bit-slice design due to the propagation delay

of the 'comparison-information' bit. A compromise design is

one that breaks up the n-bit number into blocks of smaller

bits, where each block is designed in a bit-slice structure.

To form an n-bit MAX/MIN unit, these blocks can either be

connected in a block-cascade or a block-slice structure. In

the block-cascade structure, each block's output depends on

the compare decision of the preceding blocks. This compare

decision bit propagates from block to block. In the block-

slice structure, each block is independent of previous or

succeeding block compare decisions.

The following sections will give a detailed

explanation on these design concepts. For simplicity, we will,

however, be looking at a MIN operator unit design since a MAX

can be designed by just replacing the comparator circuit as

explained in the previous section.

a. Cascade MrN Design

Lets define the two fuzzy numbers to be compared as

A = (an-1 a -2,...a i ao)

B = (bn1,b 2 b. b0)

18

where

a,, b, is the ith bit of A and B respectively

and the MIN output as

0 = (on_ 1 o n_2 i 00)

where

o, the ith bit of the output 0.

for instance,

if A = (0011)

and B = (1010)

then 0 = (0011).

Let's consider the i-th stage of the MIN operation.

The output o will not only depend on the comparison of ai and

b, but also on the (i+l)th stage comparison. Thus

if a,+, < b,,, then o, a,

if a,+ 1 = b+, then o i a, if a, < b i

= b i if a i > b i

We can now define the propagating 'compare-

decision' indicator bit from the (i+l)th stage as follows:

Ci+ I = 1 if a,+1 = bi 1

gi+1
= 1 if a,+1 < bi+1

For the ith stage, we define the following two

local indicators:

zi = 1 if and only if ai = bi

yi = 1 if and only if a, < bi

From these definitions, the following equations

were derived [Ref. 4]

19

gi = gi i + ci+lyi (1)

c i = ci+IZi (2)

oi = aig 1 + big i (3)

A block schematic of a 1 bit MIN unit is as shown

in Figure 6 [Ref. 4] . Figure 7 shows the Boolean logic gates

realization of the above equations. To form an n-bit MIN unit,

n of this 1 bit MIN will be cascaded.

yI

C1+ -F .1

Lii
L \

01

Figure 6 Block Schematic of 1 bit MIN

20

'A ______' _____ _ _ _ _

Figure 7 1 bit MIN Circuit
Diagram

b. Bit-Slice Design

In the cascade design, a feature that slows down

the MIN operation is the propagation delay caused by the.

ripple effect of the c, and g, variables from the MSB to the

LSB. Bit-slice overcomes this by employing comparison look-

ahead. Thus, each bit position of the output is independent of

the decisions of the preceding stages.

Examining the recurrence equations (1) and (2), we

see that it has a recursive property. Applying this property,

we can generate c and g for each bit position independently.

For example, c and g placed into each bit position of a 4-bit

MIN unit are,

21

C4

C 3 C4 Z 3

C2 C 3 Z 2 = C 4 Z 3 Z2

C1 C 2 Z 1 C 4 Z 3 Z 2 Z 1

94=0

93 = g4 + c4Y 3

92 = 93 + c3Y2 = 94 4Y3 + C4z3Y2

1 = 92 + c2Y1 = 94 + C4Y3 + c4z3Y2
+ C4Z3Z2Y1

Observe that the variables c4 and g4 in the

expressions for c1, c2, c3, g, g2 and g3 are actually redundant

since they are always connected to logic "1" and "0"

respectively. Note that for an n-bit MIN unit, cn is always

set to logic "I" while g, is always set to logic "0".

Other than the input a, and b, of equation 3 we see

that the output is only affected by g. Notice that after

applying the recursive properties of equations (1) and (2),

the output does not require each bit position to generate the

variable c. In the example given, compare-decision indicators

g's are only dependent on c4 and g. which are constants and the

AND values of other local y and z indicators. For 4-bit MIN,

the compare-decision bit placed in the LSB position, gj, needs

a 4 input AND for the last product term and a 4 input OR for

the sum of all the product terms. Thus, as the number of bits

increases, the hardware implementation of g, requires a higher

22

local indicators zi and yi from the higher significant bit cell

to the lower significant bit cell will also increase. This is

true for the process of laying out the circuit in VLSI.

c. Block Cascade/Slice Design

This is a compromise design between bit-sliced and

cascaded structure. Here, an n-bit MIN unit is divided into

blocks of smaller bit units. Each block unit is bit-slice

designed. For a block cascade design, the lower order block

still depends on the preceding block comparison decision not

unlike the bit cascaded structure. A block diagram for this

structure is shown in Figure 8. The block-sliced design is

defined such as each block output is indepenent of previous

and succeeding blocks comparison decision. This requires

comparison look ahead capability for each block. Using the

same definition and notation as in the previous section, let

Gi, Ci, Zi and Y, be the decision variables for the ith block

and Ai and B, its binary input and Oi its output. Note that the

variables are all capitalized to distinguish them from the

variables used in the bit-slice design. If we define

Zi = 1 when Ai = Bi

Yi = 1 when Ai < Bi

then

Ci = Ci+1 Zi (4)

Ci = Gi+1 + Ci+lY i (5)

and the output is given by

23

Oi = AiGi + BiuiQ (6)

We see that these equations are similar to

equations (1), (2) and (3). To render each block independent,

we apply the same principle as in the bit-slice design. This

requires yielding Z and Y variables for each block

simultaneously. The following equations (Ref. 4] generates Z

and Y for each block.

Z i ' Zid+d-1.Zd~d-2 Zid

Yi= Yid-d-1 + Zid-d-1 d-d-2 Zidd-lZid+d-2"" Zid Yid

The comparison look-ahead circuit can then be derived by

recursively applying equations (4) and (5). A block diagram of

the block-slice struicture is as shown in Figure 9.

MAX 4 _ 1_ /M* N 4 AX/M 4 AX

Figure 8 Block diagram of 16
bit block-cascade (4bit/block)

24

_________________________4 71

B: 1 1 SLIC 8 1 SL I C E I SI

0 0 0

Figure 9 Block diagram of 16
bit block-slice (4 bit/block)

25

IV. VLSI IMPLEMENTATION PROCEDURES

In this chapter, we discuss the procedure of how the fuzzy

operator units were implemented using VLSI CAD tools and the

simulation results. The main steps were

1. Converting the Boolean logic gates circuit diagram to
Complementary Metal Oxide 'Silicon (CMOS) transistors
circuit diagram.

2. Layout of the transistor circuit diagram using MAGIC.

3. Functionality test of the layout using RNL.

4. Timing simulations using SPICE.

The circuits that were implemented and simulated are as

follows:

* Bit Serial.

* 2 bit cascade and 2 bit bit-slice.

* 4 bit cascade and 4 bit bit-slice.

* 8 bit cascade and 8 bit bit-slice

* 16 bit cascade and 16 bit bitslice.

* 16 bit block cascade (4 bit/block).

* 16 bit block cascade (8 bit/block).

* 16 bit block-slice (4 bit/block).

26

A. CMOS TRANSISTOR CIRCUIT

The VLSI circuit for the various designs were implemented

using CMOS technology. The circuits from the previous chapter

were converted to their equivalent transistor circuit by

directly substituting each logic gate with its equivalent CMOS

transistor circuit. Figures 10, 11, 12 and 13 shows OR, AND,

NOT and EXCLUSIVE-OR equivalent CMOS transistor circuit

respectively. [Ref. 15) gives a detail account on these

circuits.

VDD

GND

Figure 10 NOR gate equivalent
CMOS transistor circuit.

27

2--

*

SGND

Figure 11 NAND gate equivalent CMOS transistor
circuit.

v u:

Figure 12 NOT gate equivalent CMOS transistor
circuit

28

V 2

L B

A A

Figure 13 Exclusive-Or equivalent CMOS transistor
circuit

B. VLSI CAD TOOLS

The CAD tools used in this thesis were Magic, RNL and

SPICE. The following sections give a brief overview on these

CAD tools.

1. Magic

Magic is an interactive CAD tool layout editing system

for large-scale custom designed Metal Oxide Silicon (MOS)

integrated circuits. It provides different technologies for

custom-designed circuits. It was developed by faculty and

students at the University of California, Berkeley in 1983.

(Ref. 5) . Some of the features in Magic are:

9 Uses rectangular or Manhattan style layouts.

* Contains user interactive layout editing operations.

29

" Checks layout for design rule violation automatically and
informs user interactively.

" Contains a hierarchical circuit extractor to convert
graphical layout to a file that contains information about
sizes and shapes of transistors, connectivity, resistance
and nodes capacitance of the layout. This file is needed
in running simulation tools.

2. RNL

This is a timing logic simulator for digital MOS

circuits. It is an event-driven simulator. It uses a simple

resistance-capacitance model of the circuit. It estimates node

transition times and the effect of charge sharing. RNL can be

used for circuit verfication as well as timing measurements.

For simulation, RNL requires two sets of

information:

" a description of the network to be simulated.

" a command to control simulation run.

The network to be simulated can be described using

Magic layout or a netlist file (a textual schematics). Command

input to RNL can be entered interactively or in batch mode.

Command input includes initializing the network and applying

stimulus signals. (Ref. 6]

3. SPICE

SPICE is an acronym for Simulation Program with

Integrated Circuit Emphasis. It was developed at University of

California, Berkeley. It is a general purpose simulation

30

program for nonlinear dc, nonlinear transient, and linear ac

analyses.

Circuits are described to SPICE through an input file,

which lists each circuit element (resistor, capacitor,

inductance, voltage/current source, semiconductor device) and

indicates how each is connected using node numbers. The file

may also contain lines which designate the frequency of

sources, temperature, the types of analyses to be done and how

the analysis results are to be presented.

To analyze the circuit, SPICE first uses Kirchoff's

current law to create a system of equations in which the

voltages at each node are the unknowns and the admittance of

each branch connecting two nodes is the known quantities. This

group of equations is then made into an admittance matrix. The

Newton-Raphson method is then used to solve this matrix.

Various models for semiconductor devices are inherent in

SPICE, the user has only to provide the model's parameter. The

SPICE used in the thesis is version 2G6. [Ref. 7]

C. VLSI CIRCUIT LAYOUT OF FUZZY OPERATOR UNIT

All of the operator units layout were done using Magic.

Some designs, such as bit-cascade and block-cascade which

features regularity in its layout, use Magic first to generate

the basic building blocks (lower level cells). Then Coordinate

Free LAP (CFL) facilities are used to assemble (interconnect)

these cells into the desired final form. CFL is a library of

31

subroutines written in C to facilitate the construction of

VLSI circuit layouts. In-depth information about CFL can be

found in [Ref. 6]. Designs with no regularity features had to

be laid by hand. This includes block-slice and bit-slice

designs. Magic layout for the various designs are given in the

Appendix.

D. LAYOUT VERIFICATION

Layout verification is performed using RNL. Using the

Magic extract command the layout information of the circuit

was extracted into a file with a .ext extension. This file

contains information about the circuit's transistor nodes and

interconnection as well as its internodal capacitance and

resistance.

Ext2sim program, part of UCB CAD tools, is then used to

convert the .ext file produced by Magic to a flat circuit

representation which is a requirement for simulation. This

produces a file with a .sim extension.

Before we can run a R.4L timing simulation, the .sim file

must go through RNL preprocessor's PRESIM to convert it into

a binary network file. The converted circuit layout is now

ready for simulation. The result of running PRESIM also

indicates the total number of transistors used in the circuit.

The verification process was done interactively after

invoking RNL. A few input samples was presented to the circuit

and the output was then verified accordingly. For example, for

32

an 8-bit MAX circuit, if A = 10011001 and B=11010001 then the

output was verfied to be 0 = 11010001. Note that the time

interval between each simulation steps has to be large enough

to handle any propagation delay inherent in the circuit for

the output to be verified correctly.

E. TIMING ANALYSIS

As stated in the previous section, in order to run SPICE

we require an input file that describes the circuit. This is

done through the use of sim2spice, another UCB CAD tool, that

converts the .sim format file to a SPICE format. This file

will only contain the list of transistors and capacitors. The

transistors model parameters and simulation information has to

be provided. [Ref. 16] gives more detail on how to do this.

SPICE simulation was only done on the following circuits

* INV

* serial design

* 1, 2, 4 bit cascade MAX/MIN

* 2, 4 bit-slice MAX/MIN

Due to memory limitation, SPICE was not used to simulate

the other designs. RNL timing simulations was used to estimate

these design timing performance. The SPICE simulation was run

on ISI machines.

33

F. RESULTS

Table 2, Table 3 and Table 4 are the experimental results

for the various fuzzy logic operator designs.

1. VLSI Estate Area

Table 2 shows the VLSI area used by the various

designs. These areas may not reflect an optimum area since the

layout process is an art by itself which depends very much on

individual doing the layout. However to some degree the

tabulated area may give us some means of making estate area

comparisons. The table indicates that serial design uses the

least area while bit-slice uses the most.

TABLE 2. LAYOUT VLSI ESTATE AREA

Design Area in Scalable CMOS

Serial 57,120

n bit INV 893"n

n bit cascade (24128*n) + 3248

16 bit cascade 389,296

2 bit-slice 94,640

4 bit-slice 190,986

8 bit-slice 528,700

16 bit-slice 1,790,019

16 bit block cascade 674,176
(4 bits/block)

16 bit block cascade 1,123,332
(8 bits/block)

16 bit block slice 1,584,435
(4 bits/block)

34

2. Transistor Count

Table 3 gives the total number transistors that make

up a particular design. We observe that bit-serial design

uses the least number of transistors. Block-slice design used

more transistors than bit-slice for a 16 bit unit.

TABLE 3. TRANSISTOR COUNT

Design Number of transistors

Serial 98

n bit INV 2*n

n bit-cascade 58*n

16 bit-cascade 928

2 bit-slice 108

4 bit-slice 232

8 bit-slice 528

16 bit-slice 1312

16 bit block cascade 964
(4 bits/block)

16 bit block cascade 1076
(8 bits/block)

16 bit block slice 1358
(4 bits/block)

35

3. Timing Analysis

To obtain the estimate of the speed of operation, we

use the RNL timing simulation result as the basis of

comparison among the various designs. SPICE results could not

be used since we were only able to run simulation on designs

of 4 bit cases. Table 4 shows the RNL and SPICE time delay

measurements respectively.

The speed of operation is measured as the delay that

occurs before the output of the operator unit become valid. We

do this by changing the input bits and observing when the

output bits settle to the correct result. To obtain the

maximum ouput delay, for example for a 4-bit MAX unit, first

we set input A = '0000' and input B = '0001'. This causes

output 0 =10001. Then set A = '1000' Since this is a MAX

unit, output bit position 0 will change to a '0' since A is

now greater than B. We measure the delay it takes for output

bit 0 to change from a 1 to a 0. We then reset A = '0000' and

measure the delay for bit 0 to change back to a '1'. We

average these two delay measurements for our final result.

Notice that the delay measurements between RNL and

SPICE are different. RNL, which is a switch-level timing

simulator, uses the resistor-capacitor(RC) delay associated

with each gate. This RC delay is estimated from the layout but

does not include the detailed capacitance of junction and

routing. This may explain the difference in the results.

36

The advantage of using RNL is that we can make a quick

and rough estimation of the circuit's behavior. The

mesurements may not however be used as the actual unit delay.

SPICE is a much more accurate device simulation but takes a

much longer time to run.

TABLE 4. RNL DELAY MESUREMENTS

Design Time Delay

Serial 35 ns

INV 1.5 ns

1 bit MAX/MIN 2.5 ns

2 bit cascade 3.2 ns

4 bit cascade 4.8 ns

8 bit cascade 8.0 ns

16 bit cascade 14.3 ns

2 bit-slice 2.6 ns

4 bit-slice 3.2 ns

8 bit-slice 4.5 ns

16 bit-slice 7.3 ns

16 bit block cascade 8.6 ns
(4 bits/block)

16 bit block cascade 7.7 ns
(8 bits/block)

16 bit block slice 8.8 ns
(4 bits/block)

37

TABLE 5. SPICE DELAY MEASUREMENTS

Design Time Delay

1 bit MAX/MIN 14.2 ns

2-bit cascade 16.6 ns

4-bit cascade 24.3 ns

2 bit-slice 15 ns

4 bit-slice 17.6 ns

38

V. CONCLUSIONS

In the thesis we have implemented the basic fuzzy

operation units i.e., the MAX, MIN and INV using VLSI.

Various designs of MAX and MIN were investigated and the

following conclusions were made,

* Bit-serial designs use the least VLSI estate area and
transistors but the operation is slow compared to the
other designs. It requires about 35ns to complete a 1 bit
comparison. A better circuit design may have achieved
better results.

" MAX and MIN uses the same number of transistors and VLSI
estate area for the various designs. The main difference
between these two circuits is in the magnitude comparator
circuit.

* Adopting the fuzzy numbering system used in the thesis,
the INV unit is only composed of inverters. This
simplifies the design and the unit delay is independent of
the number of bits used. However it should be noted that
this numbering system does not have the representation for
decimal 0.5. But as the number of bits used increases,
this should not pose any problem.

Taking 16 bit as the basis of comparison for the four

design schemes used in the MAX/MIN operator, the following are

observed,

" Bit-cascade uses the least VLSI area whereas bit-slice
takes up the most area. Block slice used nearly as much
area as the bit-slice. Area-wise block-cascade seem to be
the compromise. Here the number of bits per block affect
the area used. 8-bit per block used twice as much as 4-bit
per block.

" In terms of the least number of transistors used, bit-
cascade or block-cascade(4-bit/block) is the better
design.

39

9 For timing performance, bit-slice design yields the better
result.

On the basis of these observations, we may conclude

that a fast fuzzy operation can be achieved if the number of

transistors and VLSI area used does not matter. The

alternative is to have a slower operation. Between the block-

cascade and block-slice, there seem to be very minor

differences in the timing performance but they vary greatly in

the VLSI area and transistors used. Thus, one may conclude

that a compromise design between the extreme of bit-slice and

bit-cascade is the block-cascade or block-slice. Still between

these two designs, one may choose one or the other depending

on performance desired and the cost factor.

Further work may be carried out in using these designs as

the basic building blocks for a fuzzy controller or fuzzy

inference engine.

40

APPENDIX

V44,, is 1d t@ U

333 U1U 3 4*BhI

iUT

Figure A.1 Bit Serial Layout

0 - a',

*it1 U V3 3
a . 3 *3 a . . a s 2 8 0 s % - v , W % w , 9 W '

a :o "g vi ws-*i au Fl's I 6wrn as af

ONDI

Figure A.2 Comparison look-
ahead layout

41

0 ~ '~"E

000

Figure A. 3 1-bit MAX Operator
Layout

42

Ad 23 92A2 But 5010

6' -
IL 1

i ~
p

~'I a

Figure A.4 MAX 4 bit-casacde Layout

43

'.. I *V

Mr

%.-~ s

.

FiL4.1

Fiur .5 16 bt lokCacae (4 bi/lok

Layoutr;

44.

p.MOO

..........

I I ~ 01

b .1 . 1

0 3

10 4

~ I *:.7 o

.- 12

~~114

0..~

J*C .F I2 .

Figure ~ ~ A. 1 bt-lie.A

ELayout

45~

LIST OF REFERENCES

1. L.A. Zadeh, "Fuzzy Sets," Information and Control, Vol. 8,

pp. 338-353, 1965.

2. David K. Kahaner, Walter J. Freeman and Armando Freitas da

Rocha, "Fuzzy Logic," Scientific Information Bulletin,

Vol. 16, No.1, pp. 41-54 , Jan-Mar 1991.

3. J.T. Johnson, "Fuzzy Logic," Popular Science, pp. 87-89,

July 1990.

4. Jia-Yuan, Han and Supreet Singh, "Comparison Look-Ahead

and Design of Fast Fuzzy Operation Unit," IEEE Multi-

valued Logic Conference, pp. 121-125, 1990.

5. University of California, Berkeley, Report No. UCB/CSD

86/273, 1986 VLSI Tools: Still More Works by the Original

Artists, by Walter S. Scott, Robert N. Mayo, Gordon

Hamachi and John K. Ousterhout, December 1985.

6. NW Laboratory for Integrated Systems, TR # 88-09-01, VLSI

Design Tools Reference Manual Release 3.2, Department of

Computer Science, University of Washington, September

1988.

46

7. A. Vladimirescu, Kaihe Zhang, A.R. Newton, D.O. Pederson,

and A. Sangiovanni-Vincentelli, "SPICE User's Guide,"

UW/NW VLSI Release 2.1, Department of Electrical

Engineering and Computer Sciences, University of

California, Berkeley.

8. L.A. Zadeh, "Fuzzy Logic," Computer, pp. 83-92, April

1988.

9. L.A. Zadeh, "Outline of a New Approach to the Analysis of

Complex Systems and Decision Processes," IEEE Transactions

Systems Man Cybernetic, SMC-3, pp.28-45, 1973.

10. Abraham Kandal, and Samuel C. Lee, Fuzzy Switching and

Automata: Theory and Application, Crane Russak and Company

Inc., 1979.

11. E.H. Mamdani and S. Assilian, "An Experiment in Linguistic

Synthesis with Fuzzy Logic Controller," International

Journal Man-Machine Studies, Vol.7, pp. 1-13, 1975.

12 Masaki Togai and Hiroyuki Watanabe, "A VLSI Implementation

of a Fuzzy Inference Engine: Toward an Expert System on a

Chip," Information Sciences, Vol.38, pp. 147-163, 1986.

13. W.J.M. Kickert and H.R. Van Nauta Lemke, "Application of

a Fuzzy Controller in a Warm Water Plant," Automatica,

Vol.12, pp. 301-308, Pergamon Press 1976.

14. Kevin Self, "Designing with Fuzzy Logic," IEEE Spectrum,

pp. 42-44, November 1990.

47

15. Neil Weste, and Kamran Eshraghian, Principles of CMOS VLSI

Design: A System Perspective, Addison-Wesley Publishing

Company, 1985.

16. Naval Postgraduate School, ECE VLSI Lab Notes.

48

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Chyan Yang, Code EC/Ya
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor Jon T. Butler, Code EC/Bu
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

6. Jabatanarah Latih
Department Tentera Laut
Kementerian Pertahanan
50634 Kuala Lumpur, Malaysia

7. Lt Cdr Ismail bin Dewa
958, Jalan Teratai 12
Taman Marida, Senawang
70450 Seremban, Negeri Sembilan
Malaysia

49

